338 research outputs found

    Energy Efficient Data-Intensive Computing With Mapreduce

    Get PDF
    Power and energy consumption are critical constraints in data center design and operation. In data centers, MapReduce data-intensive applications demand significant resources and energy. Recognizing the importance and urgency of optimizing energy usage of MapReduce applications, this work aims to provide instrumental tools to measure and evaluate MapReduce energy efficiency and techniques to conserve energy without impacting performance. Energy conservation for data-intensive computing requires enabling technology to provide detailed and systemic energy information and to identify in the underlying system hardware and software. To address this need, we present eTune, a fine-grained, scalable energy profiling framework for data-intensive computing on large-scale distributed systems. eTune leverages performance monitoring counters (PMCs) on modern computer components and statistically builds power-performance correlation models. Using learned models, eTune augments direct measurement with a software-based power estimator that runs on compute nodes and reports power at multiple levels including node, core, memory, and disks with high accuracy. Data-intensive computing differs from traditional high performance computing as most execution time is spent in moving data between storage devices, nodes, and components. Since data movements are potential performance and energy bottlenecks, we propose an analysis framework with methods and metrics for evaluating and characterizing costly built-in MapReduce data movements. The revealed data movement energy characteristics can be exploited in system design and resource allocation to improve data-intensive computing energy efficiency. Finally, we present an optimization technique that targets inefficient built-in MapReduce data movements to conserve energy without impacting performance. The optimization technique allocates the optimal number of compute nodes to applications and dynamically schedules processor frequency during its execution based on data movement characteristics. Experimental results show significant energy savings, though improvements depend on both workload characteristics and policies of resource and dynamic voltage and frequency scheduling. As data volume doubles every two years and more data centers are put into production, energy consumption is expected to grow further. We expect these studies provide direction and insight in building more energy efficient data-intensive systems and applications, and the tools and techniques are adopted by other researchers for their energy efficient studies

    Intra- and inter-examiner Reliability of Direct Facial Soft Tissue Measurements Using Digital Calipers

    Get PDF
    Background: The objective of this study is to determine if facial soft tissue measurements using digital calipers can be reliably taken by the same examiner and by a large group of examiners. Materials and Methods: Ten examiners performed a set of 18 in-clinic measurements on 10 female and 10 male dental students using a digital caliper twice over a 3-week period. The intra-class correlation coefficient and the Shrout-Fleiss method were used for the statistical analysis. Results: Anthropometric intra-examiner reliability was high for all measurements (none fell below R = 0.934). However, inter-examiner reliability exhibited a wide range of values, some reliable (nasal width at widest nostrils [R = 0.922] and subnasale to upper lip [R = 0.926]), and others unreliable [base of nose (R = 0.590), mouth height (R = 0.585), and soft tissue B point to gnathion (R = 0.623)]. Conclusions: Soft tissue measurements of clearly identifiable points measured by the same examiner produced highly consistent, accurate and reliable measurements. Soft tissue points with poor definition resulted in average-to-poor reliabilities measurements

    Quantification of the Individual Characteristics of the Human Dentition

    Get PDF
    The considerations for admissibility suggested by the Daubert trilogy challenge forensic experts to provide scientific support for opinion testimony. The defense bar has questioned the reliability of bitemark analysis. Under an award from the U. S. Department of Justice, via the Midwest Forensic Resource Center, a two-year feasibility study was undertaken to quantify six dental characteristics. Using two computer programs, the exemplars of 419 volunteers were digitally scanned, characteristics were measured, and frequency was calculated. The study demonstrates that there were outliers or rare dental characteristics in measurements. An analysis of the intra-observer and inter-observer consistency demonstrated a high degree of agreement. Expansion of the sample size through collaboration with other academic researchers will be necessary to be able to quantify the occurrence of these characteristics in the general population. The automated software application, Tom\u27s Toolbox, developed specifically for this research project, could also provide a template for precisely quantifying other pattern evidence

    The Leiodolide B Puzzle

    No full text
    Out of options? Even though a systematic approach was chosen, which led to a set of four diastereomeric macrolides modeled around the proposed structure of leiodolide B (see picture), the puzzle concerning the stereostructure of this cytotoxic metabolite derived from a deep-sea sponge still remains unsolved

    Extreme sensitivity of the spin-splitting and 0.7 anomaly to confining potential in one-dimensional nanoelectronic devices

    Full text link
    Quantum point contacts (QPCs) have shown promise as nanoscale spin-selective components for spintronic applications and are of fundamental interest in the study of electron many-body effects such as the 0.7 x 2e^2/h anomaly. We report on the dependence of the 1D Lande g-factor g* and 0.7 anomaly on electron density and confinement in QPCs with two different top-gate architectures. We obtain g* values up to 2.8 for the lowest 1D subband, significantly exceeding previous in-plane g-factor values in AlGaAs/GaAs QPCs, and approaching that in InGaAs/InP QPCs. We show that g* is highly sensitive to confinement potential, particularly for the lowest 1D subband. This suggests careful management of the QPC's confinement potential may enable the high g* desirable for spintronic applications without resorting to narrow-gap materials such as InAs or InSb. The 0.7 anomaly and zero-bias peak are also highly sensitive to confining potential, explaining the conflicting density dependencies of the 0.7 anomaly in the literature.Comment: 23 pages, 7 figure

    Genomic analysis of the function of the transcription factor gata3 during development of the Mammalian inner ear

    Get PDF
    We have studied the function of the zinc finger transcription factor gata3 in auditory system development by analysing temporal profiles of gene expression during differentiation of conditionally immortal cell lines derived to model specific auditory cell types and developmental stages. We tested and applied a novel probabilistic method called the gamma Model for Oligonucleotide Signals to analyse hybridization signals from Affymetrix oligonucleotide arrays. Expression levels estimated by this method correlated closely (p<0.0001) across a 10-fold range with those measured by quantitative RT-PCR for a sample of 61 different genes. In an unbiased list of 26 genes whose temporal profiles clustered most closely with that of gata3 in all cell lines, 10 were linked to Insulin-like Growth Factor signalling, including the serine/threonine kinase Akt/PKB. Knock-down of gata3 in vitro was associated with a decrease in expression of genes linked to IGF-signalling, including IGF1, IGF2 and several IGF-binding proteins. It also led to a small decrease in protein levels of the serine-threonine kinase Akt2/PKB beta, a dramatic increase in Akt1/PKB alpha protein and relocation of Akt1/PKB alpha from the nucleus to the cytoplasm. The cyclin-dependent kinase inhibitor p27(kip1), a known target of PKB/Akt, simultaneously decreased. In heterozygous gata3 null mice the expression of gata3 correlated with high levels of activated Akt/PKB. This functional relationship could explain the diverse function of gata3 during development, the hearing loss associated with gata3 heterozygous null mice and the broader symptoms of human patients with Hearing-Deafness-Renal anomaly syndrome

    Phage-mediated horizontal transfer of a Staphylococcus aureus virulence-associated genomic island

    Get PDF
    Staphylococcus aureus is a major pathogen of humans and animals. The capacity of S. aureus to adapt to different host species and tissue types is strongly influenced by the acquisition of mobile genetic elements encoding determinants involved in niche adaptation. The genomic islands νSaα and νSaβ are found in almost all S. aureus strains and are characterized by extensive variation in virulence gene content. However the basis for the diversity and the mechanism underlying mobilization of the genomic islands between strains are unexplained. Here, we demonstrated that the genomic island, νSaβ, encoding an array of virulence factors including staphylococcal superantigens, proteases, and leukotoxins, in addition to bacteriocins, was transferrable in vitro to human and animal strains of multiple S. aureus clones via a resident prophage. The transfer of the νSaβ appears to have been accomplished by multiple conversions of transducing phage particles carrying overlapping segments of the νSaβ. Our findings solve a long-standing mystery regarding the diversification and spread of the genomic island νSaβ, highlighting the central role of bacteriophages in the pathogenic evolution of S. aureus

    Investigating mitochondrial DNA relationships in Neolithic Western Europe through serial coalescent simulations

    Get PDF
    Recent ancient DNA studies on European Neolithic human populations have provided persuasive evidence of a major migration of farmers originating from the Aegean, accompanied by sporadic hunter-gatherer admixture into early Neolithic populations, but increasing toward the Late Neolithic. In this context, ancient mitochondrial DNA data collected from the Neolithic necropolis of Gurgy (Paris Basin, France), the largest mitochondrial DNA sample obtained from a single archeological site for the Early/Middle Neolithic period, indicate little differentiation from farmers associated to both the Danubian and Mediterranean Neolithic migration routes, as well as from Western European hunter-gatherers. To test whether this pattern of differentiation could arise in a single unstructured population by genetic drift alone, we used serial coalescent simulations. We explore female effective population size parameter combinations at the time of the colonization of Europe 45000 years ago and the most recent of the Neolithic samples analyzed in this study 5900 years ago, and identify conditions under which population panmixia between hunter-gatherers/Early-Middle Neolithic farmers and Gurgy cannot be rejected. In relation to other studies on the current debate of the origins of Europeans, these results suggest increasing hunter-gatherer admixture into farmers' group migrating farther west in Europe.European Journal of Human Genetics advance online publication, 28 December 2016; doi:10.1038/ejhg.2016.180
    corecore